Part Number Hot Search : 
5LE97 181V2B MBT440 2SC2287 10F26 F2010 PUMH9125 F2012
Product Description
Full Text Search
 

To Download MRF1518T1 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  mrf1518nt1 MRF1518T1 1 rf device data freescale semiconductor rf power field effect transistor n - channel enhancement - mode lateral mosfet designed for broadband commercial and industrial applications with frequen- cies to 520 mhz. the high gain and broadband performance of this device make it ideal for large - signal, common source amplifier applications in 12.5 volt mobile fm equipment. ? specified performance @ 520 mhz, 12.5 volts output power ? 8 watts power gain ? 11 db efficiency ? 55% ? capable of handling 20:1 vswr, @ 15.5 vdc, 520 mhz, 2 db overdrive ? excellent thermal stability ? characterized with series equivalent large - signal impedance parameters ? rf power plastic surface mount package ? broadband uhf/vhf demonstration amplifier information available upon request ? n suffix indicates lead - free terminations ? available in tape and reel. t1 suffix = 1,000 units per 12 mm, 7 inch reel. table 1. maximum ratings rating symbol value unit drain- source voltage v dss - 0.5, +40 vdc gate - source voltage v gs 20 vdc drain current ? continuous i d 4 adc total device dissipation @ t c = 25 c (1) derate above 25 c p d 62.5 0.50 w w/ c storage temperature range t stg - 65 to +150 c operating junction temperature t j 150 c table 2. thermal characteristics characteristic symbol value unit thermal resistance, junction to case r jc 2 c/w table 3. moisture sensitivity level test methodology rating package peak temperature unit per jesd 22 - a113, ipc/jedec j - std - 020 1 260 c 1. calculated based on the formula p d = note - caution - mos devices are susceptible to damage from electrostatic charge. reasonable precautions in handling and packaging mos devices should be observed. mrf1518 rev. 6, 3/2005 freescale semiconductor technical data mrf1518nt1 MRF1518T1 520 mhz, 8 w, 12.5 v lateral n - channel broadband rf power mosfet case 466 - 03, style 1 pld - 1.5 plastic g d s t j? t c r jc ? freescale semiconductor, inc., 2005. all rights reserved.
2 rf device data freescale semiconductor mrf1518nt1 MRF1518T1 table 4. electrical characteristics (t c = 25 c unless otherwise noted) characteristic symbol min typ max unit off characteristics zero gate voltage drain current (v ds = 40 vdc, v gs = 0 vdc) i dss ? ? 1 adc gate - source leakage current (v gs = 10 vdc, v ds = 0 vdc) i gss ? ? 1 adc on characteristics gate threshold voltage (v ds = 12.5 vdc, i d = 100 a) v gs(th) 1.0 1.6 2.1 vdc drain- source on - voltage (v gs = 10 vdc, i d = 1 adc) v ds(on) ? 0.4 ? vdc dynamic characteristics input capacitance (v ds = 12.5 vdc, v gs = 0, f = 1 mhz) c iss ? 66 ? pf output capacitance (v ds = 12.5 vdc, v gs = 0, f = 1 mhz) c oss ? 33 ? pf reverse transfer capacitance (v ds = 12.5 vdc, v gs = 0, f = 1 mhz) c rss ? 4.5 ? pf functional tests (in freescale test fixture) common- source amplifier power gain (v dd = 12.5 vdc, p out = 8 watts, i dq = 150 ma, f = 520 mhz) g ps 10 11 ? db drain efficiency (v dd = 12.5 vdc, p out = 8 watts, i dq = 150 ma, f = 520 mhz) 50 55 ? %
mrf1518nt1 MRF1518T1 3 rf device data freescale semiconductor figure 1. 450 - 520 mhz broadband test circuit v dd c6 r4 c7 c5 r3 rf input rf output z2 z3 z6 c1 c3 c12 dut z7 z9 z10 z4 z5 l1 z8 n2 c16 b2 n1 + c11 c10 b1, b2 short ferrite beads, fair rite products (2743021446) c1, c12 240 pf, 100 mil chip capacitors c2, c3, c10, c11 0 to 20 pf trimmer capacitors c4 82 pf, 100 mil chip capacitor c5, c16 120 pf, 100 mil chip capacitors c6, c13 10 f, 50 v electrolytic capacitors c7, c14 1,200 pf, 100 mil chip capacitors c8, c15 0.1  f, 100 mil chip capacitors c9 30 pf, 100 mil chip capacitor l1 55.5 nh, 5 turn, coilcraft n1, n2 type n flange mounts r1 15 ? chip resistor (0805) r2 51 ? , 1/2 w resistor r3 10 ? chip resistor (0805) r4 33 k ? , 1/8 w resistor z1 0.451 x 0.080 microstrip z2 1.005 x 0.080 microstrip z3 0.020 x 0.080 microstrip z4 0.155 x 0.080 microstrip z5, z6 0.260 x 0.223 microstrip z7 0.065 x 0.080 microstrip z8 0.266 x 0.080 microstrip z9 1.113 x 0.080 microstrip z10 0.433 x 0.080 microstrip board glass teflon ? , 31 mils, 2 oz. copper z1 c2 r1 c4 v gg c13 + c8 b1 r2 c14 c15 c9 typical characteristics, 450 - 520 mhz p out , output power (watts) irl, input return loss (db) ?5 ?15 ?20 ?10 2 0 0 11 1 figure 2. output power versus input power p in , input power (watts) 2 figure 3. input return loss versus output power 0.3 p out , output power (watts) 0 6 0.5 0.1 4 520 mhz 470 mhz 500 mhz 0.4 0.6 0.2 0 12 450 mhz 3 520 mhz 470 mhz 500 mhz 450 mhz 10 8 5 4679 810 v dd = 12.5 vdc v dd = 12.5 vdc
4 rf device data freescale semiconductor mrf1518nt1 MRF1518T1 typical characteristics, 450 - 520 mhz 2 p out , output power (watts) 50 10 80 012 eff, drain efficiency (%) 30 60 40 3 1 500 mhz 520 mhz 470 mhz eff, drain efficiency (%) figure 4. gain versus output power p out , output power (watts) 7 5 13 figure 5. drain efficiency versus output power 2 gain (db) 0 figure 6. output power versus biasing current 12 i dq , biasing current (ma) 0 figure 7. drain efficiency versus biasing current 70 i dq , biasing current (ma) 45 figure 8. output power versus supply voltage 8 v dd , supply voltage (volts) 2 figure 9. drain efficiency versus supply voltage v dd , supply voltage (volts) 30 12 11 8 0 40 60 60 30 400 0 7 12 600 1000 80 2 4 8 9 17 200 50 11 11 p out , output power (watts) 200 1000 400 600 p out , output power (watts) 91516 10 91011 16 3 1 65 55 3 4 6 5 eff, drain efficiency (%) 50 70 35 500 mhz 520 mhz 470 mhz 450 mhz 450 mhz 500 mhz 520 mhz 470 mhz 450 mhz 500 mhz 520 mhz 470 mhz 450 mhz 500 mhz 520 mhz 470 mhz 450 mhz 500 mhz 520 mhz 470 mhz 450 mhz v dd = 12.5 vdc p in = 26.2 dbm i dq = 150 ma p in = 26.2 dbm v dd = 12.5 vdc p in = 26.2 dbm i dq = 150 ma p in = 26.2 dbm v dd = 12.5 vdc 467 58910 15 467 5891011 0 20 70 v dd = 12.5 vdc 800 6 10 800 40 35 14 12 13 11 8 10 9 15 13 14 45 55 65 75
mrf1518nt1 MRF1518T1 5 rf device data freescale semiconductor figure 10. 820 - 850 mhz broadband test circuit v dd rf input rf output c1 dut l1 n2 n1 b1, b2 long ferrite beads, fair rite products c1, c9 12 pf, 100 mil chip capacitors c2 6.8 pf, 100 mil chip capacitor c3, c4 20 pf, 100 mil chip capacitors c5 51 pf, 100 mil chip capacitor c6, c13 1000 pf, 100 mil chip capacitors c7, c14 0.039 f, 100 mil chip capacitors c8 1 f, 20 v tantalum chip capacitor c10 3 pf, 100 mil chip capacitor c11, c12 51 pf, 100 mil chip capacitors c15 22 f, 35 v tantalum chip capacitor l1, l2 18.5 nh, 5 turn, coilcraft n1, n2 type n flange mounts r1 47 ? chip resistor (0805) z1 1.145 x 0.080 microstrip z2 0.786 x 0.080 microstrip z3 0.115 x 0.223 microstrip z4 0.145 x 0.223 microstrip z5 0.260 x 0.223 microstrip z6 0.081 x 0.080 microstrip z7 0.104 x 0.080 microstrip z8 1.759 x 0.080 microstrip board glass teflon ? , 31 mils, 2 oz. copper v gg b1 r1 l2 z1 c2 z2 z3 c3 c4 z4 + c8 c7 c6 c5 z5 z6 c9 z7 c10 z8 c11 b2 c12 c13 c14 c15 + typical characteristics, 820 - 850 mhz p out , output power (watts) irl, input return loss (db) ?10 ?30 ?40 ?20 2 1 0 12 figure 11. output power versus input power p in , input power (watts) 4 figure 12. input return loss versus output power 0.3 p out , output power (watts) 0 6 0.5 0.1 2 820 mhz 830 mhz 0.4 0.6 0.2 0 12 840 mhz 3 8 10 46 57891011 v dd = 12.5 vdc v dd = 12.5 vdc 850 mhz 820 mhz 830 mhz 840 mhz 850 mhz
6 rf device data freescale semiconductor mrf1518nt1 MRF1518T1 typical characteristics, 820 - 850 mhz 2 p out , output power (watts) 50 0 70 4 eff, drain efficiency (%) 30 60 40 3 1 eff, drain efficiency (%) figure 13. gain versus output power p out , output power (watts) 7 5 13 figure 14. drain efficiency versus output power 2 gain (db) 1 figure 15. output power versus biasing current 12 i dq , biasing current (ma) 0 figure 16. drain efficiency versus biasing current 70 i dq , biasing current (ma) figure 17. output power versus supply voltage 8 v dd , supply voltage (volts) 2 figure 18. drain efficiency versus supply voltage v dd , supply voltage (volts) 30 12 12 8 0 60 70 60 0 400 0 5 12 600 1000 80 2 6 4 9 17 200 50 4 11 p out , output power (watts) 200 1000 400 600 p out , output power (watts) 13 916 11 91011 16 3 3 4 7 8 eff, drain efficiency (%) 65 75 55 15 68 7 5 10 12 11 9 20 10 80 68 7 51012 11 9 800 10 8 800 40 10 14 15 6 10 11 9 50 45 40 35 15 13 14 820 mhz 830 mhz 840 mhz v dd = 12.5 vdc 850 mhz 820 mhz 830 mhz 840 mhz 850 mhz v dd = 12.5 vdc 30 20 10 v dd = 12.5 vdc 820 mhz 830 mhz 840 mhz 850 mhz v dd = 12.5 vdc 820 mhz 830 mhz 840 mhz 850 mhz 820 mhz 830 mhz 840 mhz 850 mhz v dd = 12.5 vdc 820 mhz 830 mhz 840 mhz 850 mhz v dd = 12.5 vdc
mrf1518nt1 MRF1518T1 7 rf device data freescale semiconductor figure 19. 400 - 470 mhz broadband test circuit v dd c8 r4 c9 c7 r3 rf input rf output z2 z3 z4 z7 c1 c3 c14 dut z8 z10 z11 z5 z6 l1 z9 n2 c18 b2 n1 + c13 c4 c12 b1, b2 short ferrite beads, fair rite products (2743021446) c1, c14 240 pf, 100 mil chip capacitors c2, c3, c4, c11, c12, c13 0 to 20 pf trimmer capacitors c5 30 pf, 100 mil chip capacitor c6 47 pf, 100 mil chip capacitor c7, c18 120 pf, 100 mil chip capacitors c8, c15 10 f, 50 v electrolytic capacitors c9, c16 1,200 pf, 100 mil chip capacitors c10, c17 0.1 f, 100 mil chip capacitors l1 55.5 nh, 5 turn, coilcraft n1, n2 type n flange mounts r1 15 ? chip resistor (0805) r2 51 ? , 1/2 w resistor r3 10 ? chip resistor (0805) r4 33 k ? , 1/8 w resistor z1 0.476 x 0.080 microstrip z2 0.724 x 0.080 microstrip z3 0.348 x 0.080 microstrip z4 0.048 x 0.080 microstrip z5 0.175 x 0.080 microstrip z6, z7 0.260 x 0.223 microstrip z8 0.239 x 0.080 microstrip z9 0.286 x 0.080 microstrip z10 0.806 x 0.080 microstrip z11 0.553 x 0.080 microstrip board glass teflon ? , 31 mils, 2 oz. copper z1 c2 c11 r1 c6 v gg c15 + c10 b1 r2 c16 c17 c5 typical characteristics, 400 - 470 mhz p out , output power (watts) irl, input return loss (db) ?5 ?15 ?20 ?10 2 0 0 12 1 figure 20. output power versus input power p in , input power (watts) 4 figure 21. input return loss versus output power 0.3 p out , output power (watts) 0 6 0.5 0.1 2 440 mhz 470 mhz 0.4 0.7 0.2 0 12 400 mhz 3 470 mhz 400 mhz 440 mhz 0.6 8 10 46 57891011 v dd = 12.5 vdc v dd = 12.5 vdc
8 rf device data freescale semiconductor mrf1518nt1 MRF1518T1 typical characteristics, 400 - 470 mhz 440 mhz 2 p out , output power (watts) 50 0 70 04 eff, drain efficiency (%) 30 60 40 3 1 eff, drain efficiency (%) figure 22. gain versus output power p out , output power (watts) 7 5 13 figure 23. drain efficiency versus output power 2 gain (db) 0 figure 24. output power versus biasing current 12 i dq , biasing current (ma) 0 figure 25. drain efficiency versus biasing current 70 i dq , biasing current (ma) 45 figure 26. output power versus supply voltage 8 v dd , supply voltage (volts) 2 figure 27. drain efficiency versus supply voltage v dd , supply voltage (volts) 30 12 12 8 0 60 70 60 30 400 0 5 12 600 1000 80 2 6 4 9 17 200 50 4 11 p out , output power (watts) 200 1000 400 600 p out , output power (watts) 13 916 11 91011 16 3 1 65 55 3 4 7 8 eff, drain efficiency (%) 65 75 55 470 mhz 440 mhz 400 mhz 470 mhz 440 mhz 400 mhz 470 mhz 440 mhz 400 mhz 470 mhz 440 mhz 400 mhz 470 mhz 440 mhz 400 mhz 470 mhz 400 mhz v dd = 12.5 vdc p in = 26.8 dbm i dq = 150 ma p in = 26.8 dbm v dd = 12.5 vdc p in = 26.8 dbm i dq = 150 ma p in = 26.8 dbm 15 68 7 5 10 12 11 9 20 10 80 68 7 51012 11 9 800 10 8 800 40 35 10 14 15 6 10 11 9 50 45 40 35 15 13 14 v dd = 12.5 vdc v dd = 12.5 vdc
mrf1518nt1 MRF1518T1 9 rf device data freescale semiconductor figure 28. 135 - 175 mhz broadband test circuit v dd c7 r4 c8 c6 r3 rf input rf output z2 z6 c1 c13 dut z8 z9 z10 z4 z5 l4 n2 c17 b2 n1 + c11 c4 b1, b2 short ferrite beads, fair rite products (2743021446) c1, c13 330 pf, 100 mil chip capacitors c2, c4, c11 0 to 20 pf trimmer capacitors c3 12 pf, 100 mil chip capacitor c5 43 pf, 100 mil chip capacitor c6, c17 75 pf, 100 mil chip capacitors c7, c14 10 f, 50 v electrolytic capacitors c8, c15 1,200 pf, 100 mil chip capacitors c9, c16 0.1 f, 100 mil chip capacitors c10 75 pf, 100 mil chip capacitor c12 13 pf, 100 mil chip capacitor l1 26 nh, 4 turn, coilcraft l2 5 nh, 2 turn, coilcraft l3 33 nh, 5 turn, coilcraft l4 55.5 nh, 5 turn, coilcraft n1, n2 type n flange mounts r1 15  chip resistor (0805) r2 56  , 1/4 w carbon resistor r3 100  chip resistor (0805) r4 33 k  , 1/8 w carbon resistor z1 0.115 x 0.080 microstrip z2 0.255 x 0.080 microstrip z3 1.037 x 0.080 microstrip z4 0.192 x 0.080 microstrip z5, z6 0.260 x 0.223 microstrip z7 0.125 x 0.080 microstrip z8 0.962 x 0.080 microstrip z9 0.305 x 0.080 microstrip z10 0.155 x 0.080 microstrip board glass teflon ? , 31 mils, 2 oz. copper z1 v gg c14 + c9 b1 r2 c15 c16 l3 c12 l1 c10 r1 c5 z3 c2 c3 z7 l2 typical characteristics, 135 - 175 mhz p out , output power (watts) irl, input return loss (db) ?5 ?15 ?20 ?10 2 0 0 12 1 figure 29. output power versus input power p in , input power (watts) 2 figure 30. input return loss versus output power 0.2 p out , output power (watts) 0 6 0.3 4 135 mhz 175 mhz 0.4 0.1 0 12 155 mhz 3 135 mhz 175 mhz 155 mhz 10 8 46 57891011 v dd = 12.5 vdc v dd = 12.5 vdc
10 rf device data freescale semiconductor mrf1518nt1 MRF1518T1 typical characteristics, 135 - 175 mhz 155 mhz 6 p out , output power (watts) 50 0 80 012 eff, drain efficiency (%) 30 60 40 9 3 eff, drain efficiency (%) figure 31. gain versus output power p out , output power (watts) 9 7 17 figure 32. drain efficiency versus output power 2 gain (db) 0 figure 33. output power versus biasing current 12 i dq , biasing current (ma) 0 figure 34. drain efficiency versus biasing current 70 i dq , biasing current (ma) 45 figure 35. output power versus supply voltage 8 v dd , supply voltage (volts) 2 figure 36. drain efficiency versus supply voltage v dd , supply voltage (volts) 30 9 13 8 0 40 60 60 30 400 0 7 12 600 1000 80 2 6 4 11 19 200 50 4 15 p out , output power (watts) 200 1000 400 600 p out , output power (watts) 12 916 11 12 11 13 16 3 1 65 55 3 6 4 5 eff, drain efficiency (%) 50 70 35 155 mhz 135 mhz 175 mhz 20 10 135 mhz 175 mhz 155 mhz 135 mhz 175 mhz 155 mhz 135 mhz 175 mhz 155 mhz 135 mhz 175 mhz 155 mhz 135 mhz 175 mhz v dd = 12.5 vdc p in = 24.5 dbm i dq = 150 ma p in = 24.5 dbm v dd = 12.5 vdc p in = 24.5 dbm i dq = 150 ma p in = 24.5 dbm 68 7 51012 11 9 13 410 7 15 11 8 2 70 10 8 800 800 40 35 10 15 14 11 10 8 9 10 14 15 45 65 55 75 v dd = 12.5 vdc v dd = 12.5 vdc
mrf1518nt1 MRF1518T1 11 rf device data freescale semiconductor note: z ol * was chosen based on tradeoffs between gain, drain ef ficiency, and d evice stability. figure 37. series equivalent input and output impedance f mhz z in ? z ol * ? 450 4.9 +j2.85 6.42 +j3.23 z in = complex conjugate of source impedance with parallel 15 ? resistor and 82 pf capacitor in series with gate. (see figure 1). z ol * = complex conjugate of the load impedance at given output power, voltage, frequency, and d > 50 %. v dd = 12.5 v, i dq = 150 ma, p out = 8 w 470 4.85 +j3.71 4.59 +j3.61 500 4.63 +j3.84 4.72 +j3.12 520 3.52 +j3.92 3.81 +j3.27 z o = 10 ? 520 f = 450 mhz z in z ol * 520 f = 450 mhz z in z ol * input matching network device under test output matching network f mhz z in ? z ol * ? 820 1.42 - j0.32 2.34 +j0.23 z in = complex conjugate of source impedance. z ol * = complex conjugate of the load impedance at given output power, voltage, frequency, and d > 50 %. v dd = 12.5 v, i dq = 150 ma, p out = 8 w 830 1.39 - j0.21 2.36 +j0.47 840 1.32 - j0.16 2.40 +j0.69 850 1.23 - j0.13 2.37 +j0.79 z o = 10 ? f = 820 mhz z in z ol * f = 850 mhz f = 820 mhz f = 850 mhz
12 rf device data freescale semiconductor mrf1518nt1 MRF1518T1 z in = complex conjugate of source impedance with parallel 15 ? resistor and 43 pf capacitor in series with gate. (see figure 28). z ol * = complex conjugate of the load impedance at given output power, voltage, frequency, and d > 50 %. note: z ol * was chosen based on tradeoffs between gain, drain ef ficiency, and device stability. figure 37. series equivalent input and output impedance (continued) z o = 10 ? z in = complex conjugate of source impedance with parallel 15 ? resistor and 47 pf capacitor in series with gate. (see figure 19). z ol * = complex conjugate of the load impedance at given output power, voltage, frequency, and d > 50 %. f mhz z in ? z ol * ? 400 4.28 +j2.36 4.41 +j0.67 v dd = 12.5 v, i dq = 150 ma, p out = 8 w 440 6.45 +j5.13 4.14 +j2.53 470 5.91 +j3.34 3.92 +j4.02 f mhz z in ? z ol * ? 135 18.31 - j0.76 8.97 +j2.62 v dd = 12.5 v, i dq = 150 ma, p out = 8 w 155 17.72 +j1.85 9.69 +j2.81 175 18.06 +j5.23 7.94 +j1.14 f = 135 mhz 175 z in z ol * 135 f = 175 mhz f = 470 mhz z in 400 z ol * 400 f = 470 mhz z in z ol * input matching network device under test output matching network
mrf1518nt1 MRF1518T1 13 rf device data freescale semiconductor table 5. common source scattering parameters (v dd = 12.5 vdc) i dq = 150 ma f s 11 s 21 s 12 s 22 f mhz |s 11 | ? |s 21 | ? |s 12 | ? |s 22 | ? 50 0.88 - 148 18.91 99 0.033 11 0.67 - 144 100 0.85 - 163 9.40 86 0.033 -6 0.66 - 158 200 0.85 - 170 4.47 73 0.026 -17 0.69 - 162 300 0.87 - 171 2.72 64 0.025 -28 0.74 - 163 400 0.88 - 172 1.85 56 0.021 -21 0.79 - 164 500 0.90 - 173 1.35 52 0.019 -30 0.83 - 165 600 0.92 - 173 1.04 47 0.014 -26 0.85 - 167 700 0.93 - 174 0.83 44 0.015 -39 0.88 - 168 800 0.94 - 175 0.68 39 0.014 -31 0.90 - 169 900 0.94 - 175 0.55 36 0.010 -41 0.91 - 170 1000 0.96 - 176 0.46 30 0.011 -38 0.95 - 170 i dq = 800 ma f s 11 s 21 s 12 s 22 f mhz |s 11 | ? |s 21 | ? |s 12 | ? |s 22 | ? 50 0.90 - 159 20.80 97 0.020 14 0.73 - 162 100 0.88 - 169 10.35 88 0.018 1 0.74 - 169 200 0.88 - 174 5.09 79 0.017 -9 0.75 - 171 300 0.89 - 175 3.23 73 0.015 -18 0.77 - 171 400 0.89 - 175 2.30 67 0.015 -17 0.80 - 171 500 0.90 - 176 1.74 63 0.014 -22 0.82 - 170 600 0.91 - 176 1.39 59 0.014 -19 0.83 - 171 700 0.92 - 176 1.16 55 0.009 -23 0.85 - 171 800 0.93 - 176 0.96 50 0.011 -14 0.87 - 172 900 0.94 - 177 0.80 46 0.007 4 0.88 - 173 1000 0.94 - 177 0.67 41 0.010 -15 0.89 - 173 i dq = 1.5 a f s 11 s 21 s 12 s 22 f mhz |s 11 | ? |s 21 | ? |s 12 | ? |s 22 | ? 50 0.91 - 159 20.18 97 0.015 11 0.73 - 165 100 0.89 - 169 10.05 89 0.016 -5 0.74 - 171 200 0.88 - 174 4.93 80 0.015 -3 0.75 - 172 300 0.89 - 175 3.14 73 0.014 -14 0.78 - 172 400 0.89 - 176 2.24 67 0.014 -20 0.80 - 171 500 0.90 - 176 1.70 64 0.014 -22 0.82 - 170 600 0.92 - 176 1.36 59 0.010 -16 0.84 - 171 700 0.92 - 176 1.13 55 0.013 -10 0.85 - 171 800 0.93 - 177 0.94 50 0.008 -13 0.87 - 172 900 0.94 - 177 0.78 46 0.013 -26 0.87 - 173 1000 0.94 - 178 0.65 41 0.007 8 0.87 - 172
14 rf device data freescale semiconductor mrf1518nt1 MRF1518T1 applications information design considerations this device is a common - source, rf power, n - channel enhancement mode, lateral m etal - o xide s emiconductor f ield - e ffect t ransistor (mosfet). freescale application note an211a, ?fets in theory and practice?, is suggested reading for those not familiar with the construction and char- acteristics of fets. this surface mount packaged device was designed pri- marily for vhf and uhf portable power amplifier applica- tions. manufacturability is improved by utilizing the tape and reel capability for fully automated pick and placement of parts. however, care should be taken in the design process to insure proper heat sinking of the device. the major advantages of lateral rf power mosfets in- clude high gain, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mis- matched loads without suffering damage. mosfet capacitances the physical structure of a mosfet results in capacitors between all three terminals. the metal oxide gate structure determines the capacitors from gate - to - drain (c gd ), and gate - to - source (c gs ). the pn junction formed during fab- rication of the rf mosfet results in a junction capacitance from drain - to - source (c ds ). these capacitances are charac- terized as input (c iss ), output (c oss ) and reverse transfer (c rss ) capacitances on data sheets. the relationships be- tween the inter - terminal capacitances and those given on data sheets are shown below. the c iss can be specified in two ways: 1. drain shorted to source and positive voltage at the gate. 2. positive voltage of the drain in respect to source and zero volts at the gate. in the latter case, the numbers are lower. however, neither method represents the actual operating conditions in rf ap- plications. drain c ds source gate c gd c gs c iss = c gd + c gs c oss = c gd + c ds c rss = c gd drain characteristics one critical figure of merit for a fet is its static resistance in the full - on condition. this on - resistance, r ds(on) , occurs in the linear region of the output characteristic and is speci- fied at a specific gate - source voltage and drain current. the drain - source voltage under these conditions is termed v ds(on) . for mosfets, v ds(on) has a positive temperature coefficient at high temperatures because it contributes to the power dissipation within the device. bv dss values for this device are higher than normally re- quired for typical applications. measurement of bv dss is not recommended and may result in possible damage to the de- vice. gate characteristics the gate of the rf mosfet is a polysilicon material, and is electrically isolated from the source by a layer of oxide. the dc input resistance is very high - on the order of 10 9 ? ? resulting in a leakage current of a few nanoamperes. gate control is achieved by applying a positive voltage to the gate greater than the gate - to - source threshold voltage, v gs(th) . gate voltage rating ? never exceed the gate voltage rating. exceeding the rated v gs can result in permanent damage to the oxide layer in the gate region. gate termination ? the gates of these devices are es- sentially capacitors. circuits that leave the gate open - cir- cuited or floating should be avoided. these conditions can result in turn - on of the devices due to voltage build - up on the input capacitor due to leakage currents or pickup. gate protection ? these devices do not have an internal monolithic zener diode from gate - to - source. if gate protec- tion is required, an external zener diode is recommended. using a resistor to keep the gate - to - source impedance low also helps dampen transients and serves another important function. voltage transients on the drain can be coupled to the gate through the parasitic gate - drain capacitance. if the gate - to - source impedance and the rate of voltage change on the drain are both high, then the signal coupled to the gate may be large enough to exceed the gate - threshold voltage and turn the device on. dc bias since this device is an enhancement mode fet, drain cur- rent flows only when the gate is at a higher potential than the source. rf power fets operate optimally with a quiescent drain current (i dq ), whose value is application dependent. this device was characterized at i dq = 150 ma, which is the suggested value of bias current for typical applications. for special applications such as linear amplification, i dq may have to be selected to optimize the critical parameters. the gate is a dc open circuit and draws no current. there- fore, the gate bias circuit may generally be just a simple re- sistive divider network. some special applications may require a more elaborate bias system. gain control power output of this device may be controlled to some de- gree with a low power dc control signal applied to the gate, thus facilitating applications such as manual gain control, alc/agc and modulation systems. this characteristic is very dependent on frequency and load line.
mrf1518nt1 MRF1518T1 15 rf device data freescale semiconductor mounting the specified maximum thermal resistance of 2 c/w as- sumes a majority of the 0.065 x 0.180 source contact on the back side of the package is in good contact with an ap- propriate heat sink. as with all rf power devices, the goal of the thermal design should be to minimize the temperature at the back side of the package. refer to freescale application note an4005/d, ?thermal management and mounting meth- od for the pld - 1.5 rf power surface mount package,? and engineering bulletin eb209/d, ?mounting method for rf power leadless surface mount transistor? for additional in- formation. amplifier design impedance matching networks similar to those used with bipolar transistors are suitable for this device. for examples see freescale application note an721, ?impedance matching networks applied to rf power transistors.? large - signal impedances are prov ided, and will yield a good first pass approximation. since rf power mosfets are triode devices, they are not unilateral. this coupled with the very high gain of this device yields a device capable of self oscillation. stability may be achieved by techniques such as drain loading, input shunt resistive loading, or output to input feedback. the rf test fix- ture implements a parallel resistor and capacitor in series with the gate, and has a load line selected for a higher effi- ciency, lower gain, and more stable operating region. two - port stability analysis with this device?s s - parameters provides a useful tool for selection of loading or feedback circuitry to assure stable operation. see free- scale application note an215a, ?rf small - signal design using two - port parameters? for a discussion of two port network theory and stability.
16 rf device data freescale semiconductor mrf1518nt1 MRF1518T1 notes
mrf1518nt1 MRF1518T1 17 rf device data freescale semiconductor notes
18 rf device data freescale semiconductor mrf1518nt1 MRF1518T1 notes
mrf1518nt1 MRF1518T1 19 rf device data freescale semiconductor package dimensions 0.115 2.92 0.020 0.51 0.115 2.92 mm inches 0.095 2.41 0.146 3.71 solder footprint case 466 - 03 issue c notes: 1. interpret dimensions and tolerances per asme y14.5m, 1984. 2. controlling dimension: inch 3. resin bleed/flash allowable in zone v, w, and x. dim min max min max millimeters inches a 0.255 0.265 6.48 6.73 b 0.225 0.235 5.72 5.97 c 0.065 0.072 1.65 1.83 d 0.130 0.150 3.30 3.81 e 0.021 0.026 0.53 0.66 f 0.026 0.044 0.66 1.12 g 0.050 0.070 1.27 1.78 h 0.045 0.063 1.14 1.60 k 0.273 0.285 6.93 7.24 l 0.245 0.255 6.22 6.48 n 0.230 0.240 5.84 6.10 p 0.000 0.008 0.00 0.20 q 0.055 0.063 1.40 1.60 r 0.200 0.210 5.08 5.33 s 0.006 0.012 0.15 0.31 u 0.006 0.012 0.15 0.31 zone v 0.000 0.021 0.00 0.53 zone w 0.000 0.010 0.00 0.25 zone x 0.000 0.010 0.00 0.25 style 1: pin 1. drain 2. gate 3. source 4. source j 0.160 0.180 4.06 4.57 a b d f l r 3 4 2 1 k n zone v zone w zone x g s h u  10 draft p c e 0.35 (0.89) x 45 5  yy q view y - y  4 2 1 3 pld - 1.5 plastic
20 rf device data freescale semiconductor mrf1518nt1 MRF1518T1 information in this document is provided solely to enable system and software implementers to use freescale semiconductor products. there are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. freescale semiconductor reserves the right to make changes without further notice to any products herein. freescale semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does freescale semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. ?typical? parameters that may be provided in freescale semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. all operating parameters, including ?typicals?, must be validated for each customer application by customer?s technical experts. freescale semiconductor does not convey any license under its patent rights nor the rights of others. freescale semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the freescale semiconductor product could create a situation where personal injury or death may occur. should buyer purchase or use freescale semiconductor products for any such unintended or unauthorized application, buyer shall indemnify and hold freescale semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that freescale semiconductor was negligent regarding the design or manufacture of the part. freescale  and the freescale logo are trademarks of freescale semiconductor, inc. all other product or service names are the property of their respective owners. ? freescale semiconductor, inc. 2005. all rights reserved. how to reach us: home page: www.freescale.com e - mail: support@freescale.com usa/europe or locations not listed: freescale semiconductor technical information center, ch370 1300 n. alma school road chandler, arizona 85224 +1 - 800- 521- 6274 or +1 - 480- 768- 2130 support@freescale.com europe, middle east, and africa: freescale halbleiter deutschland gmbh technical information center schatzbogen 7 81829 muenchen, germany +44 1296 380 456 (english) +46 8 52200080 (english) +49 89 92103 559 (german) +33 1 69 35 48 48 (french) support@freescale.com japan: freescale semiconductor japan ltd. headquarters arco tower 15f 1 - 8 - 1, shimo - meguro, meguro - ku, tokyo 153 - 0064 japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com asia/pacific: freescale semiconductor hong kong ltd. technical information center 2 dai king street tai po industrial estate tai po, n.t., hong kong +800 2666 8080 support.asia@freescale.com for literature requests only: freescale semiconductor literature distribution center p.o. box 5405 denver, colorado 80217 1 - 800- 441- 2447 or 303 - 675- 2140 fax: 303 - 675- 2150 ldcforfreescalesemiconductor@hibbertgroup.com mrf1518 rev. 6, 3/2005 document number:


▲Up To Search▲   

 
Price & Availability of MRF1518T1

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X